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A B S T R A C T   

Real-time monitoring of the additive manufacturing process offers the promise of guaranteeing product quality 
and increasing the efficiency of the printing process. This paper summarizes research results for the in situ 
monitoring of the printing process for the fused filament fabrication process. To have a systematic and 
comprehensive summary, different methods, devices, and achievements in a range of monitoring systems for 3D 
printing are described. Sensor types and devices used in the literature for printer health-state monitoring and 
printing process product quality monitoring are summarized. Discussion of current and future research directions 
concludes the review.   

1. Introduction 

Additive manufacturing (AM) is actively used in a variety of in-
dustries. According to the Wohlers Report on additive manufacturing in 
2020 it shows enormous economic potential [1,2]. The revenue is ex-
pected to rise to $23.9 billion in 2022 for all AM products and services 
worldwide. It is further predicted to climb to $35.6 billion in 2024 [3]. 
The printing process of AM is typically stacking material layer-by-layer 
to build three-dimensional (3D) products. Due to the advantages of low 
production lead time and the ability to create complicated geometries 
and shapes, the process has been employed for various industrial ap-
plications. One of the fastest-growing and widely-used AM technologies 
is fused filament fabrication (FFF) [4]. During the FFF process, the 
thermoplastic filament is fed into a hot end that melts the material and 
extrudes it from the nozzle onto a build platform, which forms a thin 
cross-sectional layer or track. This process is repeated until the whole 
object is fully printed. The most common FFF thermoplastic filaments 
are acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) [5], 
while polycarbonate (PC), polyetherimide (Ultem), polyphenylsulfone 
(PPSF), nylon, and polyether ketone ketone (PEKK) are also used in 
industrial settings [6]. FFF has been utilized for various applications, 
including biomedical [7], civil [8], and medical [9,10], in addition to 
being explored by hobbyists and educators [2,11,12]. 

Despite its advantages, FFF has lower reliability than other 
manufacturing processes, including other AM processes such as stereo-
lithography (SLA) [13], selective laser sintering (SLS) [14], and lami-
nated object manufacturing (LOM) [15]. Previous research estimates a 
20% printing failure rate for FFF by unskilled users [16]. These reli-
ability statistics arise from challenges related to material runout, nozzle 
clogging, excessive vibration, over-extrusion or under-extrusion, and 
defects associated with temperature validation. In addition, the FFF 
process is very sensitive to environmental conditions [17–19]. Better 
temperature settings, more uniform filament quality, and novel filament 
feed system could improve the printing process [20–22]. Furthermore, 
robust closed-loop control of the FFF process could mitigate process 
variations [23,24]. Active control of the printing process will become 
critical as the size and complexity of fabricated parts increase. 

In general, there are two forms of quality monitoring for the FFF 
process: (1) monitoring of printer health state; and (2) detecting product 
defects during the printing process. Ensuring high printer health state is 
key to guarantee printing efficiency and product quality [119]. Re-
searchers have investigated the use of sensors, such as vibration sensors, 
acoustic emission (AE) sensors, accelerometers, infrared thermometers, 
and visual cameras for monitoring printer health state [120]. Beyond 
monitoring the printer’s health state, in situ printing process defect 
monitoring is indispensable for detecting product quality defects [73, 
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121]. Here, the vast majority of research has focused on combining 
images taken during the printing process with image analysis, machine 
learning (ML), or other defect detection algorithms. Table 1 is a 
compilation of sensors and devices from the literature which are used for 
monitoring the 3D printer’s health state, monitoring the printing process 
product quality, or both. 

The purpose of this paper is to review and summarize the research 
that has been done on monitoring of the FFF printing process, examine 
the impacts of these monitoring systems, and discuss the current and 
future research direction. In this paper, the background is described in 
Section 1, and Section 2 presents different ways and devices used for 
monitoring 3D printer health conditions. In Section 3, research that 
focuses on monitoring the product quality during the printing process is 
discussed, the conclusion and future trends are provided in Section 4. 
The interested reader is referred to [122–137] for a more detailed re-
view on AM techniques in general or [5,138–140] for FFF and similar 
extrusion processes. 

2. Monitoring and analysis of 3D printer health state in the 
printing process 

For a consumer-grade FFF machine, Fig. 1a gives a generalized 
overview of the main components. In FFF, the extruder cold end drives 
the thermoplastic filament to the hot end, where it is heated until 
molten, then fed through the nozzle to bond it layer-by-layer on the 
heated build platform until the product is completed. In some cases, the 
platform is not heated and referred to as just a build platform [141]. By 
monitoring a 3D printer’s health state during the printing process, ma-
chine downtime and material loss can be avoided. For the majority of 
FFF machines used by individuals and industry, the extruder and heated 
build platform are the two essential parts that, to a large extent, deter-
mine the success of printing [142]. Specific examples of con-
ditions/parameters to be monitored include nozzle clogging, nozzle 
temperature, filament runout, and heated build platform temperature. 
The extruder is made up of two different parts: the cold end and the hot 
end. The details for these two components can be seen from Fig. 1b. The 
cold end drives the filament into the extruder’s hot end and has two 
important components: the stepper motor and drive gear or hobbed bolt 
that drives the filament and the idler pulley shaft that holds the filament 

in the correct place during the extrusion process. When the filament 
arrives at the hot end, the components in the hot end (i.e., heater block, 
heat sink, heater cartridge, and thermocouple) work together to accu-
rately heat the filament to a liquid state before extruding it from the 
nozzle [143]. Generally speaking, there are two extrusion systems 
available: direct extrusion and Bowden extrusion [144]. These vary by 
the location of the extruder’s cold end. As the name implies, a direct 
extrusion system positions the cold end directly above the hot end. For 
Bowden extrusion, the cold end is most often mounted on the printer’s 
body or frame, so that the filament feeds to the hot end through a 
Bowden tube [145]. Each of the extrusion type has pros and cons [146]. 
In direct extrusion, a benefit is the finer extrusion and retraction control 
due to the extruder’s motor position directly over the hot end. Moreover, 
as less torque is needed to push the filament from the motor, smaller 
motors can be utilized. But with the extruder mounted adjacent to the 
print head, the total weight of the moving portion of the print head is 
increased. This extra weight adds constraints to printing speed, and it 
also causes wobbling and a potential loss of accuracy in the X and Y axis. 
For Bowden extrusion, since the extruder is fixed on the printer’s frame, 
less weight is on the printing header. This results in higher printing 
accuracy and faster print speeds. However, the Bowden extruder needs 
to pull and push the filament through the long tube; therefore, greater 
friction exists in this process. Greater friction means a larger motor is 
required to supply the greater torque to drive the filament. And con-
trolling the filament through the long tube also increases the response 
time. Moreover, some flexible and abrasive material is easily tied-up in 
or may wear by the long Bowden tube. 

In Fig. 1, a Bowden extruder style machine is used to illustrate the 
critical components of the 3D printer. The extruder’s hot end is the most 
common location for monitoring and is typically used for gathering in-
formation related to nozzle clogging, nozzle temperature, filament 
melting condition, and nozzle movement. The second most common 
monitoring position is the cold end. Information related to filament 
feeding conditions and filament slippage is typically measured here. 
Thirdly, the heated build platform is used for collecting information 
about the printing process, including heated build platform temperature 
and vibration data. In addition to these locations, the filament itself can 
be monitored to collect filament quality and condition data (e.g., fila-
ment diameter variation and filament breakage) at a variety of locations 
either on or off the printer. 

In the section that follows, a discussion of extruder state monitoring, 
which includes extruder’s cold end, hot end, and nozzle state monitoring 
is presented in Section 2.1. Next, Section 2.2 discusses the state-of-the- 
art in filament state monitoring relates to filament breakage, filament 
runout, and filament property monitoring. Lastly, Section 2.3 covers 
build platform state monitoring. 

2.1. Extruder state monitoring 

The extruder component plays the most crucial role in a 3D printer, 
whose condition directly determines whether the printing is successful. 
As mentioned above, it includes two parts, the cold end and hot end. The 
following text is organized as follows: Section 2.1.1 presents the work 
that has been done on the cold end state monitoring, hot end condition 
monitoring is described in Section 2.1.2. Section 2.1.3 reports research 
on nozzle monitoring. Although the nozzle is part of the hot end, its 
significant impact on the printing process (e.g., layer resolution and 
printing speed) necessitates a separate section. 

2.1.1. Extruder cold end state monitoring 
The cold end consists of a stepper motor, hobbed bolt or gear, spring 

loaded idler to hold the filament, and tubing to guide the filament. In the 
cold end, the stepper motor drives the filament towards the hot end. The 
stepper motor is able to impart full torque at low speeds and make small 
movements at relatively high level of precision. As the cold end module 
applies the force required to push the filament smoothly through the 

Table 1 
Sensors and methods for the in situ monitoring of the fused filament fabrication 
process.  

Sensors/methods Printer’s health state 
monitoring 

Printing product quality 
monitoring 

Thermocouple [25–31] [32–34] 
Pressure sensor [25,35]  
Rheometer [36,27,29]  
Acoustic emission sensor [31,37–41] [37,37,39,42–45] 
Vibration sensor [28,46] [46] 
Accelerometer sensor [26,35,47–49] [32,33] 
Rotary sensor [35]  
Temperature and humidity 

sensor 
[35]  

Current sensor [50] [51] 
Force torque sensor [52]  
Piezo sensor  [53] 
Thermal camera [26] [32–34,54–63] 
Optical camera [64,65] [23,30,48,66–102] 
Microscope  [24] 
Borescope  [26,28] 
Laser scanning  [97,103–110] 
Flatbed scanner  [111] 
Encoder [30,112]  
Magnetometer [35,48]  
Ultrasonic device  [113,114] 
Physics-based compressive 

sensing  
[115–117] 

Coherent gradient sensing  [118]  
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heat block and nozzle, monitoring the extruder’s cold end condition is 
essential. Most of the fault that occurs on the cold end module are 
filament transport slippage and abnormal filament feed rate. Also, 
various research on filament breakage and filament runout are detected 
at the cold end. For the sake of clarity, these are discussed in Section 2.2. 

The most common approach to identifying different cold end states is 
by analyzing vibration signals obtained from the sensor mounted on the 
cold end module. Liu et al. demonstrated a method to recognize and 
classify different extruder states by combining extracted and reduced 
features from the AE signals with the unsupervised clustering fast search 
and find of density peaks (CFSFDP) algorithm [37]. This method pro-
vides an accurate and reliable real-time system for monitoring the 3D 
printer’s health and can classify the cold end states such as filament 

loading or unloading and filament runout. Wu et al. proposed a 
non-intrusive monitoring method by integrating AE sensing technology 
with support vector machines (SVM) for classification [38]. This method 
is capable of recognizing three different extruder cold end conditions, 
which are material loading, normal extruding, and filament runout. 
Bukkapatnam et al. developed a two degrees of freedom lumped mass 
model [47]. By extracting the printer’s vibration feature with this 
model, uncommon cold end conditions such as fast feed and slow feed 
could be identified. Wu et al. developed a more versatile algorithm using 
a hidden semi-markov model (HSMM) to diagnose the extruder states 
[40]. This new method reduces the input AE data’s dimensions and sizes 
while achieving more than 90% accuracy with the time resolution of 
0.1 s. The experimental result shows that the HSMM algorithm could 

Fig. 1. The profile of the most common consumer-grade 3D printer: (a) the 3D printer’s key components; and (b) the layout of the extruder’s cold end and hot end.  

Fig. 2. Flowchart for combined in-situ monitoring and diagnostic of a FFF machine and product quality, showing, (top) the flowchart for in-situ monitoring and 
diagnosing 3D printer healthy state in the FFF process, which uses the build platform vibration data as input data, after the offline training, the LS-SVM algorithm 
diagnoses the printer fault online, and (bottom); the flowchart for in-situ monitoring and diagnosing FFF product quality, which utilizes the vibration data from build 
platform and extruder as input, after the offline training process, the BPNN model detects product defects online [46]. 
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achieve multi-state (filament loading and unloading, filament runout, 
idle, and normal extruding) identification simultaneously. Furthermore, 
Li et al. demonstrated that through utilizing a least squares support 
vector machine (LS-SVM) and combining the vibration data extracted 
from the extruder and heated build platform, a filament jam state could 
be effectively recognized with an accuracy of over 90% [46]. Fig. 2 
shows in situ monitoring and diagnosing details for the FFF printing 
process developed by Li et al. [46]. In the flowchart, BPNN is the 
back-propagation neural network, LS-SVM is the least squares support 
vector machine, and DAQ is the data acquisition system. By analyzing 
the vibration signal, the system can diagnose the filament jam failure 
caused by spring fatigue (i.e. weakening of the spring). Under normal 
condition, the spring keeps the drive wheel aligned with the cold end 
filament connector. When the spring fatigues, the drive wheel displaces, 
thus increasing friction force between the cold end filament connector 
and the filament. 

Accurate knowledge of the filament feed rate is necessary to guar-
antee product quality during printing. However, filament slippage can 
occur between filament and feed gear, which leads to product functional 
and dimensional error. Greeff et al. combined an image processing 
system with a microscope video camera to explore the speed difference 
between filament and extruder feed gear speed [65]. The study shows 
that feed rate and extrusion temperature are the two main factors that 
influence the slippage rate, but adding closed-loop control to the 
extruder can decrease the slippage rate considerably. Go et al. explored 
the slippage rate limits in the FFF printing process [147]. Part of the 
research shows the relationship between filament shear failure and 
extrusion force. Fiedler et al. designed a new extruder drive bolt’s tooth 
geometry and evaluated the filament grip force generated from it [21]. A 
smart FFF 3D printer was built by Moretti et al. with heterogeneous 
sensing (e.g., camera, thermocouple, positional encoders, and filament 
encoder) [30]. By mounting an encoder on the back of the drive motor to 
track the filament advancement, which can indirectly evaluate the 
extruder material feed rate. This encoder can detect a 7.5 μm minimum 
filament advance. 

2.1.2. Extruder’s hot end state monitoring 
As hot end conditions directly affect the inter-layer bonding, moni-

toring the extruder’s hot end condition is essential in determining the 3D 
printer’s state [54,148]. Generally, the extruder hot end condition can 
be divided into three states: normal-extruding, semi-blocked, or 
completely-blocked. Unhealthy hot end conditions result in reduced 
product performance such as fatigue, flexural, or strain properties [142, 
149,150]. 

Researchers have demonstrated various successful methods for 
monitoring extruder hot end condition. One of the common methods 
used for inferring the hot end conditions is using AE. AE sensors detect 
the release of acoustic energy caused by the rapid release of localized 
stress energy in a material (e.g., the polymer being printed). Acoustic 
events can be caused by a variety of abnormal phenomena. It is sensitive 
to any of the extruder’s hot end states, and as such advanced signal 
processing techniques must be applied to the acquired data to detect 
anomalous extruder states. An approach to detect and classify different 
extruder states by utilizing the features from the AE signals as input data 
was proposed by Liu et al. [37]. The unsupervised clustering fast search 
and find of density peaks (CFSFDP) algorithm is trained by the features 
from the AE signals. This approach is shown to be useful for the real-time 
monitoring of the 3D printer’s health, especially for the extruder’s hot 
end health state. Fig. 3 shows the established extruder condition 
monitoring platform developed by Liu et al., which consists of an AE 
sensor, a preamplifier, a data acquisition card, and a desktop computer. 
A non-intrusive monitoring system was proposed by Wu et al. to classify 
the extruder hot end states [38]. This approach combines AE sensing 
technology with the SVM algorithm, which can recognize semi-blocked 
and blocked hot end conditions. 

Another method for monitoring the extruder hot end state is to 

monitor the vibration signals by either vibration or acceleration sensors 
[151]. The model (two degree of freedom lumped mass model) for cold 
end monitoring by Bukkapatnam et al. [47] was also used to recognize 
the overflow, underflow, fast feed, and slow feed anomalous conditions 
for the hot end. Moreover, Rao et al. built an online real-time quality 
monitoring system using heterogeneous sensors, including accelerome-
ters mounted on the heated build platform and extruder head to measure 
the vibration [26]. The system could identify the normal state, abnormal 
state due to insufficient filament extrusion, and failure to extrude state 
cause by nozzle clog. 

Images or videos captured by cameras also have been used to 
monitor various hot end conditions, such as blockages and missing 
material flow. Extruder hot end state can be quantified using either a 
person-in-the-loop, advanced image processing algorithms, or a com-
bination of the two. If the system is automated, it can achieve real-time 
extruder hot end state monitoring. Rao et al. utilized a borescope fixed 
on the printer’s extruder to get a real-time video of the extrusion pro-
cess, allowing people to visually monitor the extruder’s status during 
printing [26]. Another real-time monitoring system for advanced 
manufacturing processes is called the online sparse estimation-based 
classification proposed by Bastani et al. [28]. By applying the 
Bayesian estimation method to analyze sensor signals (i.e., thermocou-
ples, vibration sensors, and infrared melt pool temperature sensor), the 
system can detect the printing process drift (process state change from 
normal to abnormal and finally completely stops due to the clogged 
nozzle) with an accuracy of 90% (F1-score). Baumann et al. proposed an 
auxiliary thresholding algorithm, which can convert digital images 
captured from the camera fixed on the print-head into binary images to 
monitor the extruder state [64]. The system can get an accurate 
distinction between the object and object’s background by utilizing this 
algorithm. Moreover, this system can detect abnormal extruder states 
such as missing material flow due to a clogged nozzle, air-bubble in the 

Fig. 3. AE sensor-based condition monitoring platform [37].  
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extruder, or jammed material. 
Beyond the hot end module, other components also impact product 

quality, and have invoked the researcher’s interest. Fans on the ex-
truder’s hot end also play an important role in obtaining excellent 
product quality, especially the heat sink cooling fan. The heat sink 
cooling fan is required as it keeps heat from transferring up into the 
other components. Note that the fans for cooling down the printed layer 
are optional [24]. To avoid improper fan speed impact on the product 
quality. Gao et al. utilized acoustic information to predict the fan speed, 
which could prevent the defects caused by improper fan speed [48]. Kim 
et al. built a data-driven in situ FFF monitoring and diagnosing system 
by utilizing an AE sensor and an accelerometer [42]. The author designs 
a bolt loosening error to drive the nozzle head abnormal motion, which 
produces interlayer shifting. After the signal processing and feature 
extraction process, the SVM-based algorithm is used to diagnose 
whether the printing process is healthy or faulty. The result showed the 
non-linear SVM-based model had an accuracy better than 87.5%. 

2.1.3. Nozzle state monitoring 
Variations in nozzle temperature, nozzle distortion, and nozzle 

clogging can occur in the heated nozzle. Of these, nozzle clogging is one 
of the most frequent printing errors. Given the persistent challenge of 
nozzle clogging and its prominent effect on the product’s geometrical 
accuracy and mechanical properties, a majority of research has focused 
on this area [152]. He et al. proposed an online defect monitoring 
approach for the FFF process based on the product’s temperature field 
variation [62]. To get the product’s layer temperature, an infrared (IR) 
thermal camera is utilized. After feature extraction, the difference be-
tween normal and abnormal printing features are calculated. This pro-
posed approach not only detects the defects but also monitors the nozzle 
working state. The detection of nozzle blockage can also be monitored 
by tracking melt pool temperature data. Rao et al. demonstrated that 
normal, abnormal, and failure process states showed a recognizable 
pattern by analyzing the melt pool temperature data obtained from the 
non-contact IR temperature sensor [26]. By applying the nonparametric 
Bayesian and Dirichlet process mixture model and evidence theory (ET) 
with this data, this defect detection method can identify the abnormal 
FFF process such as nozzle clog with high accuracy (85% average 
F1-score). Some corrective actions can be applied to avoid nozzle clog-
ging by detecting the temperature drift process from normal to 
abnormal. Nuchitprasitchai et al. built an open-source low-cost 
real-time monitoring system with a variety of cameras that can detect 
clogged nozzles, filament runout, or object geometry error using a stereo 
calibration algorithm [69–71]. Kim et al. studied a methodology to 
detect material deposition status [51]. The research demonstrates that 
the nozzle’s extrusion pressure affects the current draw from the feed 
motor, which shows the potential to detect nozzle states using this 
methodology. A dynamic current-based model was proposed by Tlege-
nov et al. to monitor nozzle conditions [50]. By modeling the relation-
ship between the current draw, extruding torque, and effective nozzle 
diameter, nozzle clogging conditions could be identified. This work is 
validated experimentally by monitoring the extruding stepper motor’s 
current draw with a current-based monitoring system. Moreover, Tle-
genov et al. proposed a method to predict the nozzle condition by 
analyzing the acceleration’s amplitudes recorded by an accelerometer 
fixed on the extruder [49]. The setup used by Tlegenov et al. is shown in  
Fig. 4. Results from both the theoretical modeling and experimental 
study verifies that the amplitude of vibration shows a non-linear in-
crease as the nozzle becomes clogged for both direct and Bowden 
extruders. 

Monitoring the filament flow rate and nozzle melting temperature 
are also commonly carried out for the nozzle conditions. Anderegg et al. 
developed a method that used pressure transducers and thermocouple 
insertion devices, so the nozzle temperature and pressure distribution 
during the printing process can be measured, which gives vital insights 
for monitoring and improving the printing process [25]. Coogan et al. 

designed an in-line FFF rheometer by incorporating the pressure trans-
ducer and thermocouple into a modified nozzle, which could provide 
accurate filament viscosity, filament feed rate, as well as melt temper-
ature during the printing process [36]. Balani et al. optimized the FFF 
printing conditions by exploiting the printing parameters and PLA’s 
physical properties [153]. A series of results are achieved in this 
research, such as filament’s maximum inlet velocity in the liquefier, the 
PLA’s rheological behavior, and the distribution of the velocity along the 
nozzle radius. Filament flow and temperature history in material 
extrusion were investigated by Peng et al. [27]. Filament temperature 
evolution is investigated by embedded thermocouples. Filament flow 
behavior is achieved by an introduced dye marker within the filament. 
The experimental results show that the shear rate near the center of the 
filament is lower, which results in a more blunted velocity profile, and 
the material extrusion is a highly non-isothermal process. Moreover, 
Coogan et al. built a model to predict the material extrusion product’s 
interlayer strength, which combines a model to predict interlayer con-
tact with another model for predicting polymer chain diffusion [29]. The 
in-line rheometer added to the nozzle can directly measure the melt 
temperature and pressure. The heat transfer analysis is achieved by 
measuring the critical environmental temperatures using thermocou-
ples. Interlayer contact prediction is based on in-line pressure data, 
whereas polymer chain diffusion prediction is based on in-line viscosity 
and temperature measurements. A case study using this model demon-
strates applicability for real-time defect detection for material extrusion 
AM processes. 

Force sensors mounted between the print head and printer frame 
have also been used to monitor the nozzle’s condition, where the 
printing head and the build platform has a material connection through 
the melted filament. If the print head’s speed is not matched with the 
extrusion speed, printing defects will occur. De Backer et al. proposed a 
printing force and torque monitoring solution for the FFF printing pro-
cess [52]. In this solution, a force-torque sensor is mounted between the 
printing head and gantry system frame and used for recording and 
timing the printing force and torque data. By applying an algorithm to 
the force-torque data, a force and torque intensity geometry map is 
made. This force and torque intensity geometry map can be used for 
capturing printing failures by highlighting the product area where the 
recorded force or torque values are greater than a set threshold. Fig. 5 
displays one defect detection sample by using the force and torque in-
tensity geometry map. Fig. 5a shows a twisted decagon product used for 

Fig. 4. Accelerometer sensor for detecting nozzle state [49].  
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verifying defect detection, and in Fig. 5b is the force and torque intensity 
geometry map. The detail in Fig. 5c shows an anomaly at the top of the 
product that is detected by monitoring the force history. As shown in 
Fig. 5d, the real defect occurs at the same location on the printed 
product. 

2.2. Filament state monitoring 

Monitoring filament condition during the printing process helps to 
guarantee product quality. Consistency in filament parameters such as 
diameter, moisture, and pigment also have an influence on the final 
print in terms of product quality and mechanical strength [154,155]. For 
filament condition monitoring, the majority of research has focused on 
four cases: filament breakage, filament runout, material classification, 
and material quality monitoring. 

Filament breakage leads to compounding malfunctions such as sur-
face roughness error, geometrical misalignments, or printing failures. 
Most filament breakage is caused by inhomogeneous filament material, 
which can not sustain the required pulling force. Yang et al. detected 
filament breakage with AE sensors, showing that the distribution of the 
AE signal changed after filament breakage occurred. The signal changes 
are quantified using two measurable indicators: instantaneous skewness 
and relative similarity [41]. Between these indicators, the relative 
similarity is shown to outperform instantaneous skewness. Moreover, 
the relative similarity is capable of separating the breakage state from 
the steady state. Fig. 6 shows the AE sensor mounted on the extruder’s 
shell to detect the filament condition. Fig. 7 displays how the amplitude 
spectrum of AE signals changes under different manufacturing 
conditions. 

Filament runout occurs during printing. Wu et al. developed a 
method that uses AE hits as an indicator and applies the SVM with the 
radial basis function kernel to classify the printer running out of filament 
condition [38]. Liu et al. presented a method to recognize and classify 

different extruder states, including when printer is running out of ma-
terial, using features extracted from the AE signals [37]. In addition to 
AE sensors, advanced image processing algorithms are widely used for 
detecting filament runout. Nuchitprasitchai et al. built a real-time 
monitoring system with different numbers of cameras by utilizing the 
stereo calibration algorithm [69–71]. Baumann et al. proposed an 
auxiliary threshold algorithm to detect filament fault [64]. By convert-
ing digital images captured from the camera fixed on the print-head into 
binary images, this system could detect missing material flow due to 
filament runout condition. 

Filament property varies from type to type, so identifying material 

Fig. 5. Twisted decagon sample for defect detection [52]: (a) printed part; (b) the force sensed during the printing; (c) a zone with high measured tension forces; and 
(d) the resulting defect on the part. 

Fig. 6. AE sensor mounts on the extruder shell for detecting filament 
breakage [41]. 
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properties (e.g., type and color) has also been of interest to researchers 
from both the print quality and cybersecurity perspective [156,157]. 
Straub et al. proposed an approach for the filament assurance process, 
which can compare the filament that is being used with the right one 
based on the pre-calibration process [82]. The pre-calibration process 
considers filament type, lighting condition, and other controlling factors 
compiled by the user and stored in a database. This method can detect 
the inadvertent loading of incorrect filament and filament contamina-
tion during printing. 

Polymer filaments with inconsistent diameters will affect final print 
quality if the variation in diameter is high enough. Inconsistencies in 
filament diameters may cause slippage, extruder jamming, or bad 
product quality. Cardona et al. researched the filament diameter toler-
ances effects in FFF [158]. An array of digital calipers and an optical 
comparator are utilized to measure the filament diameter. The experi-
mental result indicates that using a low extrusion rate (4.23 mm/s) and 
moderate extrusion temperature (180 ∘C) combination makes it possible 
to get high diameter conformity and low diameter tolerance (0.01 mm). 
Combining mechanical and load cell sensors with different encoders, 
Soriano Heras et al. developed an advanced filament detection system 
[112]. The system can detect filament diameter variation and moving 
conditions while adjusting the extruder’s gear speed to match the real 
printing speed. 

2.3. Build platform state monitoring 

Monitoring of the heated build platform for undesired temperature 
variations is essential, as deviations in the temperature of the heated 
build platform may warp or misalign printing products [159–161]. The 
two most common parameters considered when monitoring the heated 
build platform are vibration (by acceleration sensors) and temperature 
(by thermocouples or IR cameras). To a lesser extent, AE sensors have 
also been utilized for monitoring the heated build platform state. Li et al. 
demonstrated that vibration data extracted from the extruder and 
heated build platform could be used to detect filament jam states with 

the LS-SVM algorithm [46]. Baumann et al. designed a sensor array 
including acceleration sensors and thermocouples [35]. Gao et al. built 
an online process monitoring system to defend against cyber-physical 
attacks that uses the heated build platform vibration data as one of 
the indicators to monitor the printing process [48]. Another online 
real-time quality monitoring system using heterogeneous sensors was 
developed by Rao et al., which utilizes both thermocouples and accel-
erometers to monitor the heated build platform [26]. Lastly, Wu et al. 
combined an AE sensor affixed to the heated build platform with 
K-means clustering to build a real-time failure monitoring system that 
could identify the failure time and mode by analyzing the time-domain 
and frequency-domain AE signal [39]. 

In the printing process, ensuring that the first layer adheres well to 
the build platform is the first step in producing a good quality product. 
However, an unlevel build platform significantly impacts the bonding 
process and may cause defects such as layer shifting and misalignment. 
Nam et al. proposed a data-driven approach to diagnosing a mis-leveled 
build platform [31]. The author uses different sensors, including accel-
erometers, AE sensors, and thermocouples, to collect the printer’s health 
state information. The flawed process designed in this experiment is the 
build platform leveling fault, which results in a warpage and bad 
adhesion. The result verified that the non-linear SVM-based model with 
the printer frame acceleration root mean square information has the best 
testing accuracy. 

3. Monitoring and analysis of the product quality in the printing 
process 

Monitoring and analyzing the printing process is an enabling tech-
nology for real-time quality control as it can diagnose printing abnor-
malities and defects. In addition to monitoring 3D printer health 
condition, another main task of a monitoring system is the analysis of 
product quality. A variety of aspects influence the FFF product quality, 
including surface roughness, printing infill defects, and dimension or 
geometry accuracy [162,163]. To achieve the objective of monitoring 

Fig. 7. Amplitude spectrum of AE signals under different manufacturing conditions [41].  
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the printing process and product quality, researchers have proposed 
various methods that will be discussed in Section 3. Section 3.1 describes 
the monitoring of temperature variations during the printing process. In 
Section 3.2, a discussion of in-process printing abnormality is presented, 
while product surface roughness defects detection is discussed in Section 
3.3. Finally, infill defect detection (Section 3.4) and product geometry 
error detection (Section 3.5) are also presented and discussed. 

3.1. In-process printing temperature variations monitoring 

As the FFF process deposits individual tracks to form layers, it is 
critical to maintain thermal energy to ensure there is proper inter-layer 
bonding [148,164]. When the thermoplastic filament is being extruded 
from the nozzle’s hot end, it is melted and sticky, allowing the material 
to fuse with the tracks and layers previously deposited on the build 
platform [165,166]. However, this bonding mechanism is no longer 
present once the filament temperature falls below the glass transition 
point. As expected, the lack of inter-layer bonding can affect part per-
formance and geometrical accuracy [167,168]. Therefore, monitoring 
product temperature during the printing process is being actively 
investigated as a means to ensure the quality of printed components. 

Monitoring the temperature during deposition is important in un-
derstanding the filament weld formation. Seppala and Migler utilized IR 
imaging to measure the polymer’s surface temperature profile in the 
printing process [60]. The crucially important weld temperature tem-
poral profile can be obtained from the printed layer and sublayers 
temperature profiles. The result shows that the weld temperature drops 
at a rate of approximately 100 ◦C/s, with temperature staying above the 
glass transition for approximately 1 s under typical printing conditions. 
To quantify the inter-layer weld strength from the polymer 

inter-diffusion perspective, Seppala et al. built an experimental frame-
work comprising thermography, rheology, and fracture mechanics [61]. 
They also developed an equivalent isothermal weld time which was then 
tested in relationship to the fracture energy. Costa et al. illustrated an 
analytical solution to the transient heat conduction during the filament 
deposition process [54]. The analysis process is coupled with an algo-
rithm that can activate the related boundary condition taking into ac-
count the deposition sequence. The analysis can predict the temperature 
and adhesion with time evolution by considering the main printing 
process parameters. The experimental result validates that the analysis 
prediction agrees with the measurement for both temperature and 
adhesion. 

IR cameras are the most commonly used method for monitoring the 
temperature of 3D printed components [169]. Dinwiddie et al. used an 
IR camera set up on a FFF printer to get layer-by-layer thermography 
images of ABS filament printing process, its thermal behavior and 
thermal evolution [170]. Malekipour et al. researched an ABS product’s 
layer temperature distribution and average temperature condition by 
combining the layer-based temperature profile plot with the temporal 
temperature plot [57]. An IR-based system capable of capturing spatial 
and temporal temperature variations during the progressive printing 
process was presented by Ferraris et al. [55]. Li et al. developed a new 
framework by combining physics-based and data-driven methods to 
predict the component-scale layer-to-layer thermal field [56]. Fig. 8 
shows a temperature variation monitoring system proposed by Ferraris 
et al. with an IR camera facing the 3D printer’s nozzle [55]. The system 
captured the printing temperature variation from the product’s front 
x − z plane. 

Physics-based compressive sensing (PBCS) technology can be used to 
obtain high-fidelity information by using low-fidelity measurements. 

Fig. 8. IR camera for monitoring the printing product temperature [55]: (i) picture of the thermal camera set-up for FFF printing process monitoring; (ii) the product 
geometry, filament deposition sequence, and intra-layer time for elements located on given x-y planes from the top view; (iii) picture of the printed product; and (iv) 
thermogram of the printed part. 
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This technology has also been applied to measure temperature distri-
bution. Lu et al. proposed a new compressive sensing method by 
applying a physics-based approach to efficiently and precisely monitor 
the printing process temperature distribution [115]. The PBCS accuracy 
is assessed by comparing the reconstructed temperature distribution 
using grayscale thermal images obtained from an IR camera with the 
temperature distribution getting from the PBCS. This proposed 
physics-based compressive sensing method has great potential to 
improve monitoring accuracy and efficiency with lower costs by 
reducing the number of sensors used in the monitoring system. 
Furthermore, Lu and Wang proposed an efficient transient temperature 
distribution monitoring approach for the FFF process by using PBCS 
[116,117]. The printing process can be monitored by reconstructing 3D 
temperature distributions using the sparse samplings in temporal and 
spatial domains. 

3.2. In-process printing abnormalities detection 

The term "abnormal printing process" refers to conditions where the 
printer is in a perceived healthy condition, but printing failures still 
occur. These abnormalities include poor bonding quality between the 
filament and build platform or inter-layers, shrinkage and warpage, and 
product position error. All these abnormalities have a direct or indirect 
effect on the printing product quality. 

3.2.1. First layer bonding error detection 
Poor bonding quality between the first layer and build platform leads 

to the material peeling off from the build platform, resulting in me-
chanical contact (i.e., scratching) between the nozzle and distorted 
material [171]. These failures directly influence the quality of printing 
parts. The normal and abnormal printing processes are shown in Fig. 9 
[39]. To expand, Fig. 9a shows a normal printing process where the 
material is deposited by the nozzle smoothly and the filament is 
correctly attached to the heated build platform. A failed process is 
shown in Fig. 9b, where the filament does not adhere to the heated build 
platform. 

Various sensors have been shown to be capable of detecting 
abnormal bonding processes such as filament peeling and dragging. Wu 
et al. set up an AE system attached to the upper surface of the heated 
build platform [39]. AE events vary significantly when the material is 
peeling, warping, or dragged by the nozzle as compared to the normal 
printing process. The research result shows that abnormal printing 
failures could be automatically identified by K-mean clustering. Wu 
et al. proposed an online data-driven monitoring approach based on the 
AE sensor for the FFF process to diagnose the process failure [45]. An 
unsupervised ML algorithm self-organizing map (SOM) is utilized to 
cluster different failure modes. The proposed method could detect three 

types of failure: scratching and hitting between the distorted filament 
and extruder, filament peeling off from the build platform, and material 
rubbing by nozzle or gliding on the build platform. Bhavsar et al. pre-
sented a methodology to detect first layer bond quality for the FFF 
printing process by utilizing piezoelectric sensor and the discrete 
wavelet energy approach [53]. The research shows that the first layer’s 
good or bad bond quality can be detected by analyzing the piezoelectric 
polyvinylidene difluoride sensor’s vibroacoustic signals. 

3.2.2. Inter-layer bonding error detection 
The interfacial bonding quality has a significant impact on the 

product’s mechanical property. Delamination is a printing failure, which 
is usually caused by improper fusion between the previous layer and the 
new layer. While it is a local defect, it can affect the entire printed 
product. 

Researchers have developed various approaches for delamination 
detection. Jin et al. built an automated real-time interlayer defect 
detection and prediction system for the FFF process. By combining real- 
time camera images with the CNN algorithm, this system is able to 
detect delamination, which is caused by the improper spacing between 
nozzle and build platform. Accuracy on validation data is 97.8%, shown 
in Fig. 10 [94]. In Fig. 10a, a camera connected over USB is mounted on 
the left side of the nozzle to capture the printing images. Fig. 10b shows 
product quality images for four different representing four nozzle 
spacing conditions. The "High" in Fig. 10b means the nozzle height be-
tween the filament and build platform is high, which leads to poor 
adhesion quality. Furthermore, a "High+" nozzle height makes the 
delamination even worse. On the other hand, the "Low" nozzle height 
results in a nonuniform surface quality due to the restricted space under 
the nozzle. Cummings et al. presented an in-process ultrasonic inspec-
tion for AM product [113]. Four piezoelectric transducers are bonded on 
the build platform to inspect the product periodically in the printing 
process. By comparing the normalized frequency response with the 
experimentally determined ideal response, the system can find defects 
such as delamination in recently printed layers. 

Other methods have also been explored for monitoring and assessing 
the interlayer bonding quality. Xu et al. presented a real-time AM pro-
cess monitoring system by applying phononic crystal artifacts [114]. 
This research is based on ultrasonic wave propagation in phononic 
coupons consisting of repeating substructures, which can be used to 
monitor and finally assess product bonding quality and uniformity. 
Product structure periodicity results in the dispersion of the wave, which 
is easily affected by geometric or materials properties and irregularities. 
To predict the filament connection quality between lines in different 
printing parameters, Jiang et al. proposed a deep learning ML model to 
predict the filament bonding quality for the FFF process [172]. Filament 
extrusion speed, print speed, layer height, and line distance are chosen 

Fig. 9. Image of normal and abnormal printing process [39]: (a) normal FFF printing status; and (b) abnormal FFF printing status.  
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as the deep neural network’s input, and the layer connection quality is 
the output. The prediction accuracy of this ML model can be as high as 
83%. 

3.2.3. Shrinkage and warpage error detection 
Detecting shrinkage and warpage in the printing process is important 

to control the geometry tolerance. During the printing process, when the 
printed polymer cools down, its volume decreases, even though its 
temperature is still above the glass transition temperature. When poly-
meric parts cool at different speeds or in an anisotropic way at diverse 
positions, the printed product is prone to warpage [173]. As a common 
printing error, detecting product shrinkage and warpage are essential to 
getting a good printing product. 

Researchers have investigated the relationship between warpage and 
printing parameter settings. Panda et al. built a warp performance 
evaluation model to evaluate the process’s warping characteristics 
[171]. The proposed evolutionary system identification (SI) method 
quantifies the warping by the printing process parameters, including 
line width compensation, extrusion velocity, filling velocity, and layer 
thickness. Analysis results show the layer thickness and extrusion ve-
locity affects warping the most. To study how the printing process var-
iables affect the product warpage in FFF, Armillotta et al. selected three 
variables related to product’s geometry (i.e., length, width, and height) 
and the layer thickness as influence factors [174]. The research iden-
tifies the influence factors individual and interaction effects on the 
warpage generation. 

A series of shrinkage and warpage detection methods have been 
introduced by researchers. Hu et al. illustrated a FFF printing fault 
detection method, which explores the classification of faults produced 
by the temperature filed variation [63]. With the SVM algorithm, the 

method can recognize different defects (i.e., insufficient filling, warping, 
and serious fault printing). Saluja et al. built a closed-loop FFF in-process 
warping detection system [98]. They extract product corner features as 
input into the CNN model, while the probability of a product corner 
being warped is output. The experimental result shows the mean accu-
racy yield from this model to be 99.3%. Fig. 11 shows the process pro-
posed by Saluja et al. to detect the warpage for the FFF printing process 
[98]. Li et al. proposed a product status recognition method for the FFF 
process by utilizing the AE sensor [43]. Two algorithms, HSMM and 
SVM, are applied to recognize the product normal, looseness, and curl 
status. The result shows the HSMM performs a bit better than the SVM. 
Jin et al. built an automated real-time interlayer defect detection and 
prediction system for the FFF process [94]. By fixing a strain gauge on 
the build platform, this system could detect product warping. Li et al. 
demonstrated that by utilizing a back-propagation neural network 
(BPNN) and combining acceleration data and vibration data extracted 
from the extruder and heated build platform, warpage product defects 
and abnormal filament leakage could be detected [46]. The result shows 
the diagnosis accuracy by BPNN is over 95%. 

3.2.4. Product positioning error detection 
Product position discrepancy influences product quality. Straub et al. 

developed an identification and decision-making system integrated with 
quality control process for identifying the object position discrepancy 
[78]. The system can compare the object’s silhouette taken from CAD 
files with actual product positions to identify the matching extent. 
Baumann et al. developed a vision-based error detection system [64]. 
The system uses cameras to obtain the printing process video and then 
applies the developed image processing algorithm to analyze them. As 
the normal printing product only grows vertically, a suddenly increasing 

Fig. 10. Delamination detection system setup and product quality images: (a) the monitoring system with a camera mounted on the extruder; and (b) four cases 
product quality images, which represent the four nozzle height condition [94]. 

Fig. 11. Image acquisition and analysis pipeline for the warpage classification [98].  
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horizontal pixel indicates horizontal movement (i.e., product detach-
ment from the heated build platform). The algorithm achieves detach-
ment detection by calculating image differentiation between two 
consecutive images. Results show that the system could detect product 
detachment in a short response time. By integrating multiple heteroge-
neous sensors, a smart FFF 3D printer was built by Moretti et al., to 
monitor the printing process and product quality [30]. The nozzle path 
can be reconstructed by the X, Y, Z position information from the exes 
positional encoders. The positioning error resulting in a visible 
misalignment can be detected by comparing the measured nozzle path 
with the nominal G-code path. 

3.3. Product surface roughness quality monitoring 

Surface roughness is a significant factor in part quality as it in-
fluences critical product precision, especially its functionality or as-
sembly at mechanical interfaces [175]. When the extruder is in an 
under-extrusion or over-extrusion condition, product surface rough-
ness changes drastically during the printing process [61,58,176]. 
Guaranteeing that the product’s surface roughness is within specifica-
tions is a critical part of the FFF printing process. Discussion will focus 
on both the data-driven and model-based approaches. 

3.3.1. Data-driven product surface roughness quality monitoring 
Data-driven approaches to monitoring product surface roughness 

errors have been developed. In the development of these purely data- 
driven methods, most of the research studies use cameras to get real- 
time images or video and then apply advanced algorithms to process 
the images and identify the product surface roughness condition. 

ML algorithms are commonly utilized by researchers to detect 
product surface roughness. Jin et al. mounted a camera on the FFF 
printer [68], as shown in Fig. 12a. Different product qualities for 
under-extrusion, good-quality, and over-extrusion conditions are shown 
in Fig. 12b. These images are used to build a pre-trained data set, which 
is trained by a ResNet 50 architecture CNN classification algorithm. 
After that, real-time monitoring and refining is implemented, by feeding 
real-time images into the pre-trained classification mode, the current 
condition can be obtained. Liu et al. designed a system for defect 
recognition that uses the texture analysis-based image diagnosis (TA-ID) 
algorithm to process surface images taken by a digital microscope [24]. 
The system can recognize the effects when in conjunction with a su-
pervised classification algorithm. The system could even adjust the 
related printing parameters (i.e., cooling fan on/off and material flow 
rate) to mitigate printing defects online through closed-loop feedback 
control. Wang et al. developed a vision-based online monitoring system 
to identify surface defects [99]. In this system, a mobile camera system is 

designed to monitor the product’s exterior surface from different angles. 
By utilizing a CNN algorithm, this system can detect the blob, void, thick 
line, crack, and misalignment defects. Moreover, Banadaki et al. built a 
reliable real-time quality monitoring system with a DCNN algorithm 
[90]. After training the model on images taken at each layer, the pro-
posed online model can classify five different quality grades resulting 
from overfilled or underfilled with an average accuracy of 94%. 

Other data-driven approaches utilize various advanced algorithms 
that could also achieve product surface quality assessment by analyzing 
the product texture images. Huang et al. proposed a statistical process 
monitoring (SPM) approach based on image data from a optical camera 
[93]. As the images’ mean intensity values change when the printing 
process is in different states (e.g., overfill and underfill), the monitoring 
for the manufacturing process can be achieved by calculating the 
generalized likelihood ratio (GLR) statistics for each image’s determi-
nation of regions of interest (ROI). The case study shows the proposed 
approach is effective in monitoring surface roughness for the FFF 
printing process. A series of methods were proposed by Okarma and 
Fastowicz et al. for assessing printing product surface quality. For 
example, an approach that investigates the product quality based on a 
gray-level co-occurrence matrix (GLCM) and Haralick features to 
analyze printing images for texture analysis was proposed by them [76]. 
This quality assessment method could lead to satisfactory surface 
distortion detecting and promising future deployment into the 3D 
printing process. A full reference image quality metric for assessing 3D 
printed product surface roughness was designed by Okarma et al. It uses 
printing process images captured by a camera and could achieve a 
classification accuracy of 96.8% [74]. Another method is color inde-
pendent product surface quality assessment based on image entropy, 
which can be applied for 3D printing monitoring as well as the product 
quality inspection without considering the filament color [77]. An 
improved color surface quality assessment approach based on image 
entropy was proposed recently by Okarma and Fastowicz [85]. With less 
than 100 samples, this color-independent quality assessment approach 
can identify the high or low surface quality. Beyond the approaches 
mentioned above, other quality assessment approaches were introduced 
by Fastowicz et al. The first approach uses Hough transform and histo-
gram equalization, which has a very promising classification accuracy, 
especially for the scanned images [80]. The second approach is an 
automatic product surface quality assessment based on the entropy of 
depth map images [79]. By equipping the fringe pattern-based 3D 
scanner on the 3D printer to get the most helpful product surface images, 
this approach’s classification accuracy can exceed 90%, with the 
F1-score over 92%. As the authors have published a series of related 
papers about surface quality assessment, the remaining papers are listed 
here for the convenience of the reader [75,84,86–89]. 

Fig. 12. The experimental setup and product quality under different extrusion conditions: (a) camera setup on the 3D printer; and (b) representative images for 3D- 
printed blocks under different printing qualities categories of under-extrusion, good-quality, and over-extrusion [68]. 
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3.3.2. Model-based product surface roughness quality monitoring 
In addition to the data-driven approaches discussed above, different 

model-based approaches have been developed, including the utilization 
of CAD model to detect and quantify the surface roughness, models to 
understand the printing parameters effect on surface roughness, and 
surface roughness prediction models. 

Precision CAD model is a common component that is used to assess 
the surface roughness quality. These CAD model-based methods often 
utilize advanced algorithms in combination with models to detect and 
quantify product surface roughness. Sohnius et al., proposed a method 
which can predict the location of surface defects [110]. For this method, 
two 2D laser profilometers are mounted on the 3D printer’s extruder to 
record the point cloud’s surface profile. By comparing the target model 
path (taken from the CAD model) with the actual path (produce from the 
point cloud), the surface defects can be detected. In this research, three 
ML algorithms (random forest, decision tree, and artificial neural 
network) are utilized. The result shows that the classification accuracy 
for the gap defect is over 95%. Cheng et al. built a closed-loop online 
process control model for increasing the product surface quality [23]. In 
their system, 3D surface reconstruction is achieved by intensity images 
obtained from a CCD camera based on the CAD model. By applying a 3D 
reconstruction surface with a machine vision (MV) process feedback 
system, the filament flow rate could be adjusted to reduce the 
over-extrusion or under-extrusion defect. Hurd et al. developed a quality 
assurance for the AM process using mobile computing [83]. The system 
has four parts: (1) 3D printer, (2) a host computer that controls the 3D 
printer with G-code, (3) a mobile device to achieve the visual quality 
assurance, and (4) a server that supplies communication between the 
mobile device and host computer. Two image processing algorithms (i. 
e., image subtraction and image searching) are used to detect filament 
misprint by comparing the printing layer’s image with the reference 
image from the 3D model. The proposed system can detect printing er-
rors and determine whether the printing should be stopped. 

Printing process parameters have been studied to quantify their ef-
fects on surface roughness. Jin et al. developed a new surface profile 
quantitative analysis model for the FFF product [177]. The printing 
process parameters (i.e., layer thickness and stratification angle) and 
fabrication process parameters (ratio between flow rate and feed rate) 
are the two groups used for examining their effects on the surface 
quality. The experimental result verifies the proposed model is feasible 
and effective on surface quality enhancement by optimizing the printing 
process parameters. Chaidas et al. investigated the temperature chang-
ing effect on the surface roughness [178]. The result shows that with the 
temperature increasing, the product surface roughness decreased. 
Akande et al. tried to find the optimum printing parameters to manu-
facture products with good surface quality and dimension accuracy 
[179]. Layer thickness, printing speed, and fill density are chosen as 
printing factors. The experimental results show that layer thickness is 
the most significant printing parameter for both surface roughness and 
dimension accuracy. Galantucci et al. carried out the research about the 
tip size, raster width, and slice height, three parameters that have an 
effect on product surface roughness [19]. The results verify that the slice 
height and raster width has a more significant impact on surface 
roughness. 

The surface roughness prediction model based on printing parame-
ters is also a research hotspot, as various prediction models have been 
developed. Ahn et al. put forward an approach to formulate the FFF 
product surface roughness, which is based on the main printing pa-
rameters (surface angle, layer thickness, cross-sectional shape of the 
filament, and overlap interval). The research investigates the effects of 
printing parameters on the product surface quality [180]. Comparing 
the result between the real surface data with the estimated values shows 
the proposed model can get elaborate surface roughness predictions. 
Kaji et al. proposed a methodology to predict the final product surface 
roughness quality, which is based on the layer thickness and local sur-
face slope [181]. A data-driven product surface quality predictive model 

for the FFF process was proposed by Li et al. [32,33]. The author chooses 
extruder temperature, layer thickness, and print speed ratio to extrusion 
rate as input data to understand the effect of the printing parameters on 
surface roughness. After the feature extraction process, a random forest 
algorithm is utilized to predict the surface roughness. Dambatta et al. 
built an adaptive neuro-fuzzy inference system (ANFIS) model to predict 
the surface roughness for FFF parts [182]. Layer thickness, deposition 
orientation, and geometry are chosen as the input data, the surface 
roughness is the output. The ANFIS model shows a 93.34% surface 
roughness prediction accuracy for a fabricated prototype. Vahabli et al. 
built a hybrid model to estimate surface roughness distribution [183]. 
The layer thickness and deposition are chosen as input, while the 
response variable is arithmetic mean surface roughness. The proposed 
model is demonstrated on various printing samples, and the result shows 
that the hybrid model can enhance prediction accuracy compared to the 
previous models. Vahabli et al. raised a new methodology for estimating 
the surface roughness based on radial basis function neural networks 
(RBFNNs) [184]. In this research, the input data is layer thickness and 
build angle; output is the arithmetic mean surface roughness. After 
optimizing the RBFNNs model by the imperialist competitive algorithm 
(ICA), the optimized model can get a surface roughness estimation of 
3.64% mean absolute percentage error and 2.27% mean squared error. 

To reduce surface roughness predictive errors in FFF, Taufik et al. 
proposed an innovative method to analyze and estimate the randomness 
in the build edge profiles’ geometry [175]. The research result shows 
that the proposed method can reduce the surface roughness prediction 
error compared to the existed methods. Barrios et al. compared three 
different algorithms’ (i.e., J48 algorithm, random tree, and random 
forest) surface roughness prediction performance in FFF [185]. The 
training data is the samples printed with five different factors (layer 
height, temperature, print speed, print acceleration, and flow rate) and 
three distinct levels. The results show that the random tree performs best 
in this case of study, with an 80% accuracy for the surface roughness in 
the direction parallel to the direction of extrusion and 86.67% for the 
surface roughness direction perpendicular to the direction of extrusion. 
Angelo et al. verified that to get an accurate surface error, it is not 
adequate to use just the roughness parameters [186]. Angelo et al. 
proposed a better index, the parameter Pa (ISO 4287 [187]), for evalu-
ating product surface quality and a new model to predict Pa for the 
product surface roughness manufactured by the FFF process. The new 
model prediction result shows a good match with the empirical values. 

A series of surface roughness prediction methods were put forward 
by Boschetto et al. for the FFF process. A feed-forward neural network 
surface roughness predictive approach was proposed [166]. The layer 
thickness and deposition angle are chosen as input data. After being fully 
trained, this method can predict the average roughness, matching the 
actual data very well. A methodology that integrates the surface quality 
prediction and process design was built by Boschetto et al. [188]. Using 
layer thickness and printing angle as input, this method can estimate the 
product dimension accuracy and average roughness. Since the product 
average roughness is not able to reflect the real surface roughness, 
Boschetto et al. proposed a novel 3D roughness profile model to extend 
the characterization to all roughness related parameters by a profilo-
metric analysis [189]. The method can predict a whole surface charac-
terization for the FFF process. Another model was built by Boschetto 
et al. to examine the coupled operations of barrel finishing and FFF 
[190]. The built model can predict the surface roughness by using 
printing process parameters (layer thickness and deposition angle) with 
the material quantity removed by barrel finishing. 

In summary, these model-based approaches emphasize the important 
roles of artificial intelligence-based image processing and use of data- 
driven process parameters in the determination of surface roughness 
of FFF processes. 
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3.4. Product infill printing defect detection 

In contrast to the surface faults and defects discussed in the prior 
sections, the detection of defects in product infill is especially hard as 
once the part is completed, detecting internal faults is challenging. Due 
to the thin nature of the build-up on infill, often only one track wide, 
improper parameters setting (e.g., extruder temperature and printing 
speed) can cause faults in the infill affecting the exterior where more 
tracks help to compensate for small variations in printing. Furthermore, 
infill is especially vulnerable to cyber-attacks as an attacker could alter 
the infill in such a way to compromise the part that would be nearly 
impossible to detect once the part is fully completed [191,192]. 

Monitoring of infill quality has been highlighted as a potential 
method for defending FFF from cyber-attacks [192]. Wu et al. presented 
an approach to detect malicious infill defects of the 3D printing process 
using a classification-based ML method to analyze the printing process 
images from the camera [73,193]. With a naive Bayes classifier, an infill 
defects prediction accuracy of 85.26% could be achieved. Furthermore, 
if J48 decision trees are utilized instead of naive Bayes classifiers, 
95.51% prediction accuracy could be achieved. Fig. 13 shows five 
different designed infill defect patterns: seam, irregular polygon, circle, 
rectangle, and triangle defects with 10% honeycomb infill, which almost 
cover the common infill defect patterns. Gao et al. built an online 3D 
printer monitoring system for defending against cyber-physical attacks 
where infill path attack is one of the monitored aspects [48]. The ex-
truder’s movement is tracked by using magnetometers to detect mag-
netic field intensity. The system matches the expected infill path with 
the measured infill. The average Hausdorff distance (Hausdorff distance 
describes the largest distance between sample points in two curves 
[194]) is obtained to quantify error. For 50 layers with different infill 
rates (from 5% to 20%), the measured error is less than 1 mm. Results 
show that this system could be used for monitoring the printing infill 
path error by comparing the extruder’s movement path with the 
designed infill path. By integrating multiple heterogeneous sensors, a 
smart FFF 3D printer was built by Moretti et al., capable of monitoring 
the printing process and product quality [30]. With the camera’s help, 
the poor cohesion defect between the infill and the outer wall can be 
detected from the layer image. 

As different infill level impacts the printing product’s structural 
integrity, the product’s infill level condition was also studied. Straud 
et al. used visible light imagery to assess the quality and sufficiency of 
3D printing product infill quantity [195]. According to the assessment 
result by the visible light imagery-based assessment method, this tech-
nique can determine if the product’s current infill level is appropriate or 
not. 

3.5. Product geometry error detection 

A product’s geometry accuracy is easily affected by printing process 
errors such as nozzle clogging, improper build platform temperature 
setting, or bad leveling calibration. These unanticipated anomalies in-
fluence either directly or indirectly product quality, which may produce 
defects such as product geometry deviation or deformation [196,197]. 
For these reasons, an in situ monitoring and detection system for product 

geometry defaults is worthwhile to avoid wasted energy, time, and 
material [162,163]. Discussion about the product geometry error 
detection also divides into data-driven and model-based approaches. 

3.5.1. Data-driven product geometry error detection 
To detect product geometry error, different data-driven approaches 

have been studied. In these studies, ML algorithms are often used to 
analyze real-time images or videos to monitor product geometry con-
ditions. An automated geometry defect detection approach was devel-
oped by Narayanan et al. [121]. This approach could classify good and 
defective polymer products manufactured using the FFF process by 
analyzing the printing product geometry images. Two independent ML 
methods are implemented to detect geometry defects. First, the principal 
component analysis (PCA) is utilized to reduce the images’ dimension, 
and then an SVM algorithm is used to classify the product as good or 
defective, thus achieving an overall accuracy of 98.2%. Next, a 
deep-learning approach that utilizes a convolutional neural network 
(CNN) is investigated. This method achieves a 99.5% classification ac-
curacy. Delli et al. built a real-time 3D printing monitoring system by 
integrating image processing with supervised machine learning [67]. 
The system is capable of detecting unintended failures such as filament 
runout or abnormal stop and can detect product geometrical defects 
during the printing process. Zhang et al. utilized a CNN algorithm to 
detect unfinished printing failure for the material extrusion 3D printing 
process [102]. The overall average accuracy in this approach is 70%. 

Other non-ML approaches also show good potential for detecting 
product geometry errors. Yi et al. proposed a defect detection method for 
the FFF process, which combines the statistical process control (SPC) 
with machine vision [100,101]. Utilizing SPC to analyze the extracted 
contour data from the printing process images captured by the camera, 
the contour profile defect can be detected. The result shows that the 
monitoring accuracy is 0.5 mm. A zero-defect AM process was devel-
oped by Faes et al. [105]. By implementing a closed feedback loop with 
sensors and a laser triangulation system, the developed algorithm can 
detect the deposited tracks and identify the z-direction geometrical error 
when the track is lower than one layer thickness. Li et al. applied a 
coherent gradient sensing (CGS) system to achieve the in situ defor-
mation monitoring [118]. CGS technology is a full-field, lateral shearing 
interferometric method, with some advantages, such as real-time, 
full-field, intuitive, and vibration resistant. Moreover, this method can 
potentially be utilized in stress analysis for the 3D printing product. The 
study evaluates the deformation in three different cooling processes (i. 
e., fast cooling stage, transitional cooling stage, and slow cooling stage). 
Li et al. proposed a distortion defect diagnosis by utilizing the AE sensor 
to get the build platform’s vibration data [44]. After filtering out the 
noise from the feature extraction process, this method shows promise for 
distortion detection; however, determining accuracy needs further 
study. 

3.5.2. Model-based product geometry error detection 
Model-based approaches are a common method for product geom-

etry error detection. Significant research has been done to build models 
for evaluating product geometry conditions. Methods used include those 
based on CAD and point cloud models. These methods seek to improve 

Fig. 13. Types of designed infill defect patterns [73].  
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and to predict product geometry conditions. 
CAD models are one of the most widely used methods to detect 

product geometrical defects. By comparing the in-process product image 
with the final product image (e.g., 3-D reconstruction product images 
and CAD model image), the variations in geometry can be detected. 
Using cameras for "profile monitoring" has been investigated. For 
example, Nuchitprasitchai et al. developed a camera-based error 
detection system [69,70]. In this research, two different systems with 
either a single-camera and double-camera setup were built. For the 
single-camera error detection system, the error is detected by comparing 
the STL image (2D profile extracted from the 3D STL file) with the 
camera image (2D image captured from the 3D printing product). After 
rescaling, a printing error is considered as a defect if the differences 
calculated by subtracting the STL image from the camera image are over 
5%. To detect the printing error with the two-camera system, a 3D 
reconstruction product image was built. For this setup, the printed error 
between the 3D reconstruction product image and the 3D printed 
product is detected. If the difference is more than 5%, in which case, an 
action is taken to stop the printing. A profile monitoring based FFF 
product quality control approach was proposed by He et al. [91]. The 
product dimension deviation is obtained by comparing the built profile 
with the CAD profile layer by layer. The designed system could detect 
defects, such as dislocation, staircase, and gradual change. 

More complex multi-camera systems have also been developed. 
Straub et al. built a multi-camera system that could achieve full image 
coverage of the product [72]. An imaging processing technique is 
applied in this research that compared images taken during the product 
printing progress to expected product images (e.g., CAD files) to assess 
the printing process. The system demonstrated a capability for detecting 
product defects. Fig. 14 shows the images of different printing stages and 
the pixel difference between the in-process image and the final product. 
Fig. 14a shows the finished object image. The partial object displays in 
Fig. 14b. Fig. 14c and Fig. 14d depicts the partial-complete difference 
comparison and threshold-exceeding pixels identification. By calcu-
lating the aggregate level of the pixel difference between the in-process 
image with the final product one, just as shown in Fig. 14, the system 
could detect the incomplete failure. Another error detection system was 
also developed by Nuchitprasitchai et al., which uses six web cameras to 
achieve 360 degrees coverage for printed product monitoring [71]. The 
printing error can be calculated in both the horizontal and vertical 
magnitude directions by comparing the current printing layer’s 3-D 
reconstruction images with STL image models. Moreover, printing er-
rors such as extruder clogging, filament runout, and incomplete product 
print can be automatically detected by checking the difference between 
3-D reconstruction images and STL model images. The non-rescale and 
rectification image pre-processing technique in this study has a faster 
computation speed, and the detection accuracy can achieve 100%. 

Laser scanning technology, which has high measurement accuracy 
and resolution, has also been implemented into 3D printing process 
monitoring. Comparing the point cloud from the laser scanning with the 
CAD model, the product geometry error can be recognized. Lin et al. 

proposed an online quality monitoring system for the material extrusion 
AM process, based on laser scanning technology [107]. There are three 
steps to detect the defects: (1) point cloud processing; (2) the compari-
son process between the CAD data with the scan data; and (3) defect 
reconstruction process. The proposed system not only effectually detects 
the underfill defect (e.g., gaps in the thin wall, under-extrusion, and 
unfinished product) and overfill defect (e.g., over-extrusion and scars) 
but also can reconstruct the 3D defect model. By combining the 
laser-scanned coordinates dataset with the self-organizing map (SOM) 
unsupervised machine learning approach, Khanzadeh et al. presented an 
approach to quantify the FFF printed product geometric deviation 
[106]. The geometric deviation is gotten from a comparison between the 
laser-scanned data with the original CAD data. With the SOM cluster, the 
geometric deviation on magnitude (severity) and direction can be 
recognized. Rao et al. proposed a spectral graph theory (SGT) method to 
quantify the complex AM product dimension deviation [109]. An SGT 
method achieves the dimensional integrity monitoring by calculating 
the deviation value based on the normal distance from a point on the 3D 
point cloud to the CAD model’s closest surface. Tootooni et al. built a ML 
dimensional variation classification method [104]. The spectral graph 
Laplacian eigenvalues are utilized to extract the features from the 
laser-scanned 3D point cloud data. Afterward, six ML algorithms (sparse 
representation, k-nearest neighbors, neural network, naive Bayes, sup-
port vector machine, and decision tree) are applied to evaluate the 
classification accuracy. The result shows that the sparse representation 
algorithm obtains the best classification accuracy (F1-score > 97%). 

In addition to the point cloud generated from the laser scanning, the 
point cloud from G-code has also been investigated. Holzmond et al. 
presented a quality assurance system named "certify-as-you-build" [92]. 
This system obtains product geometry using a three-dimensional digital 
image correlation (3D-DIC) and then compares the obtained product 
geometry with the point cloud generated from the G-code command to 
detect the defects. The local defect (e.g., filament blob) and global defect 
(e.g., low flow) can be detected and located. Lastly, Kopsacheilis et al. 
presented an in situ vision-based monitoring system for FFF [95]. By 
comparing the theoretical point cloud 3D model generated from the 
G-code command with the reconstructed printed model obtained from 
the camera, the system is able to evaluate the product accuracy in 
real-time. 

Augmented vision is an emerging technology that has recently been 
applied to monitoring 3D printer product geometry quality. Ceruti et al. 
developed an error detection system by applying augmented vision [66]. 
In this system, a virtual product to be printed is matched to the actual 
one, so the product geometry in different printing stages can be moni-
tored. If manufacturing errors are detected, the printing process could 
then be stopped automatically or by the operator. Malik et al. proposed a 
novel scan-based real-time layer-by-layer monitoring system for the AM 
process [96]. To reconstruct the 3D model, the printing process image is 
converted to a 3D file OBJ format. By viewing the generated OBJ file 
through augmented reality, defects can be clearly visualized. 

To improve the product dimension accuracy in FFF, various models 

Fig. 14. Images from one angle: (a) the completed product image; (b) the partial product; (c) and (d) the partial-complete difference comparison and threshold- 
exceeding pixels identification [72]. 
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related to the printing parameters have been built. Boschetto et al. 
defined a mathematical formulation, which is related to layer thickness 
and deposition angle, and can be used as a guide for compensating 
dimensional derivations [198]. With this method, it is possible to get a 
product with good dimension accuracy without removing the physical 
error source. In three study cases, the model has a marked dimension 
deviation reduction. Kaveh et al. investigated how printing parameters 
affect the product precision and internal cavity for the material without 
knowing the printing parameters [199]. Then, the presented method 
tries to find the optimum extruder temperature and raster width set-
tings. The demonstration shows that with the optimized printing pa-
rameters, the printed product internal cavity is negligible. Alizadeh et al. 
built a data-driven model that combines energy consumption with 
product geometric accuracy [200]. In this research, thickness deviation, 
product’s out-of-tolerance percentage, build time, and energy con-
sumption are selected as the variables. The proposed method is 
demonstrated and validated its effectiveness by printing on FFF product. 

The prediction of a final product’s dimension accuracy has also been 
performed using monitored or known printing parameters. To predict 
the product dimension deviation for the FFF process, Boschetto et al. 
developed a model [201] that uses the layer thickness and build orien-
tation as inputs. The prediction value from this model shows a good fit 
with the experimental data. Noriega et al. proposed a model for pre-
dicting the actual printing product dimensions based on the designed 
characteristics [202]. An artificial neural network is used to predict the 
actual dimension values; then, an optimization algorithm applies to 
decide the CAD model’s optimal dimensional values. Based on the 
optimal dimensional values, the CAD model is redesigned. The experi-
mental result shows this methodology could reduce the external 
dimension error around 50% and internal dimension error around 30%. 
Yang et al. established a FFF product precision prediction model, which 
is based on printing process parameters [203]. The input process pa-
rameters data is the cable width offset, layer thickness, filling speed, 
extrusion speed, and the fallback speed. A cyber-model based on print-
ing settings was developed by Miao et al. to predict the deformation 
during the FFF process [34]. The prediction experiment shows that the 
linear regression (LN) model performs best compared with the SVM and 
artificial neural network model. Based on this LN model, a 
cyber-physical system (CPS) was developed, which could adjust the 
nozzle temperature automatically. The evaluation experiment indicates 
this CPS could reduce the distortion remarkably. Song et al. addressed a 
shape deviation model for the FFF process [204]. In this research, the 
author attributes the extruder position error and processing error, 
including phase change and other occurred variation as two error 
sources, which impact the product consecutively. The Kriging method is 
applied to predict the extruder position error pattern. Both the experi-
mental and case study shows that the proposed model could successfully 
grasp the deviation trend. Hebda et al. presented a method to predict the 
product geometric characteristics for the FFF process [205]. Base on the 
proposed equations, the product height, width, and cross-section area 
can be predicted for the given printing parameters. 

4. Conclusion and future trends 

FFF is the most commonly used 3D printing method due to its ad-
vantages of low production cost and the ability to create complicated 
geometries and shapes. However, its lower reliability means that sig-
nificant work has been undertaken for the in situ monitoring of FFF as a 
first step to enabling robust closed-loop control of the FFF process. This 
paper summarized recent research focused on the in situ monitoring 
system for the FFF process. In situ monitoring is a driver for the next- 
generation of systems and polymers in AM. Their implementation will 
continue to increase the quality, efficiency, and sustainability of poly-
mer components manufactured using the FFF process. 

Sensing systems play a key role in the success of in situ monitoring 
systems. While indirect sensing methods (e.g., vibration and acoustic 

emissions) are useful for detecting whether a system is experiencing a 
fault, their ability to link a signal to a specific fault source is limited by 
the "uniqueness" in their signal. The "uniqueness" issue for indirect 
sensing methods represents a significant knowledge gap that limits the 
use of indirect sensing methods for in situ monitoring. Thermal and 
optical cameras are the most common method for in situ monitoring and 
have demonstrated success in fault detection, localization, and 
quantification. 

A multitude of data-driven methods for detection printer fault sce-
narios have been developed, however, the issue with "uniqueness" in 
their signal remains. Model-based and data-driven approaches for the in 
situ monitoring of components during printing have also been devel-
oped. These methods have demonstrated success in detecting geometry 
and surface roughness errors. 

Great progress has been made in the field of in situ monitoring for the 
FFF process. However, a knowledge gap still exists in how to use the 
information gained for the advancement of the FFF process in industrial 
manufacturing settings. Most importantly, the use of in situ monitoring 
for structural fault detection in components is yet to be realized. 
Structural faults are those that limit the structural functionality of a 
component, rather than just detecting faults related to component ge-
ometry or surface roughness that presently obtains. If structural fault 
detection can be widely achieved, the results could be integrated into 
part validation methodologies to empower in situ validation, with 
limited destructive or non-destructive testing of components post-print. 
Component validation using in situ monitoring would provide a signif-
icant forward leap to the FFF process. While data-driven approaches for 
structural fault detection may be relatively easy to develop, their "black 
box" approach makes them challenging to integrate into validation 
procedures for critical components. Model-based and or physics-based 
approaches that directly consider the thermodynamic and kinetic 
states of the component during the manufacturing process will allow for 
direct fault detection, localization, and quantification. Therefore, it is 
envisioned that the model-based approaches offer the most realistic 
approach to achieving in situ component validation. 

A unified framework that can flexibly integrate available sensors, 
algorithms and computational models will truly accelerate technology 
advancement. In the foreseeable future, the FFF system will be realized 
without a human-in-the-loop [104,184,206]. Moreover, the ability to 
detect and prevent cyber attacks in real-time offers a path forward for 
future research [193,207,208]. 
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[129] A. Mitchell, U. Lafont, M. Hołyńska, C. Semprimoschnig, Additive manufacturing 
— a review of 4d printing and future applications, Addit. Manuf. 24 (2018) 
606–626. 

[130] Kaufui V. Wong, Aldo Hernandez, A review of additive manufacturing, ISRN 
Mech. Eng. 2012 (2012) 1–10. 

[131] Flaviana Calignano, Diego Manfredi, Elisa Paola Ambrosio, Sara Biamino, 
Mariangela Lombardi, Eleonora Atzeni, Alessandro Salmi, Paolo Minetola, 
Luca Iuliano, Paolo Fino, Overview on additive manufacturing technologies, Proc. 
IEEE 105 (4) (2017) 593–612. 
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manufacturing of PLA structures using fused deposition modelling: effect of 
process parameters on mechanical properties and their optimal selection, Mater. 
Des. 124 (2017) 143–157. 

[140] Muhammad Harris, Johan Potgieter, Richard Archer, Khalid Mahmood Arif, 
Effect of material and process specific factors on the strength of printed parts in 
fused filament fabrication: a review of recent developments, Materials 12 (10) 
(2019) 1664. 

[141] International Organization for Standardization, Additive Manufacturing: General: 
Principles: Terminology, ISO, 2015. 

[142] Mohammad Vaezi, Chee Kai Chua, Effects of layer thickness and binder saturation 
level parameters on 3d printing process, Int. J. Adv. Manuf. Technol. 53 (1–4) 
(2010) 275–284. 

[143] Michael E. Mackay, Zachary R. Swain, Colby R. Banbury, David D. Phan, David 
A. Edwards, The performance of the hot end in a plasticating 3d printer, J. Rheol. 
61 (2) (2017) 229–236. 

[144] Md Hazrat Ali, Nazim Mir-Nasiri, Wai Lun Ko, Multi-nozzle extrusion system for 
3d printer and its control mechanism, Int. J. Adv. Manuf. Technol. 86 (1–4) 
(2016) 999–1010. 

[145] A. Abilgaziyev, T. Kulzhan, N. Raissov, Md Hazrat Ali, WL KO, N. Mir-Nasiri, 
Design and development of multi-nozzle extrusion system for 3d printer.In 2015 
International Conference on Informatics, Electronics & Vision (ICIEV), 1–5. IEEE, 
2015. 

[146] Jason Griffey, The types of 3-d printing. Library Technology Reports, 50 (5): 
8–12, 2014. 

[147] Jamison Go, Scott N. Schiffres, Adam G. Stevens, A. John Hart, Rate limits of 
additive manufacturing by fused filament fabrication and guidelines for high- 
throughput system design, Addit. Manuf. 16 (2017) 1–11. 

[148] Nicolas G. Morales, Trevor J. Fleck, Jeffrey F. Rhoads, The effect of interlayer 
cooling on the mechanical properties of components printed via fused deposition, 
Addit. Manuf. 24 (2018) 243–248. 

[149] O.H. Ezeh, L. Susmel, Fatigue behaviour of additively manufactured polylactide 
(PLA), Procedia Struct. Integr. 13 (2018) 728–734. 

[150] Lu Wang, Douglas J. Gardner, Effect of fused layer modeling (FLM) processing 
parameters on impact strength of cellular polypropylene, Polymer 113 (2017) 
74–80. 

[151] Lexey R. Sbriglia, Andrew M. Baker, James M. Thompson, Robert V. Morgan, 
Adam J. Wachtor, John D. Bernardin, Embedding sensors in fdm plastic parts 
during additive manufacturing, in: Topics in Modal Analysis & Testing, 10, 
Springer, 2016, pp. 205–214. 

[152] Giselle Hsiang Loh, Eujin Pei, Joamin Gonzalez-Gutierrez, Mario Monzón, An 
overview of material extrusion troubleshooting, Appl. Sci. 10 (14) (2020) 4776. 

[153] Shahriar Bakrani Balani, France Chabert, Valérie Nassiet, Arthur Cantarel, 
Influence of printing parameters on the stability of deposited beads in fused 
filament fabrication of poly(lactic) acid, Addit. Manuf. 25 (2019) 112–121. 

[154] Steven Eric Zeltmann, Nikhil Gupta, Nektarios Georgios Tsoutsos, 
Michail Maniatakos, Jeyavijayan Rajendran, Ramesh Karri, Manufacturing and 
security challenges in 3d printing, JOM 68 (7) (2016) 1872–1881. 

[155] R.J. Zaldivar, T.D. Mclouth, G.L. Ferrelli, D.N. Patel, A.R. Hopkins, D. Witkin, 
Effect of initial filament moisture content on the microstructure and mechanical 
performance of ULTEM® 9085 3d printed parts, Addit. Manuf. 24 (2018) 
457–466. 

[156] Eric L. Gilmer, Darren Miller, Camden A. Chatham, Callie Zawaski, Jacob 
J. Fallon, Allison Pekkanen, Timothy E. Long, Christopher B. Williams, Michael 
J. Bortner, Model analysis of feedstock behavior in fused filament fabrication: 
enabling rapid materials screening, Polymer 152 (2018) 51–61. 

[157] Ben Wittbrodt, Joshua M. Pearce, The effects of PLA color on material properties 
of 3-d printed components, Addit. Manuf. 8 (2015) 110–116. 

[158] Carolina Cardona, Abigail H. Curdes, Aaron J. Isaacs, Effects of filament diameter 
tolerances in fused filament fabrication, IU J. Undergrad. Res. 2 (1) (2016) 44–47. 

[159] Tian-Ming Wang, Jun-Tong Xi, Ye Jin, A model research for prototype warp 
deformation in the FDM process, Int. J. Adv. Manuf. Technol. 33 (11–12) (2006) 
1087–1096. 

[160] Martin Spoerk, Joamin Gonzalez-Gutierrez, Janak Sapkota, Stephan Schuschnigg, 
Clemens Holzer, Effect of the printing bed temperature on the adhesion of parts 
produced by fused filament fabrication, Plast. Rubber Compos. 47 (1) (2018) 
17–24. 

[161] Stephan Bechtel, Mirko Meisberger, Samuel Klein, Tobias Heib, Steven Quirin, 
Hans-Georg Herrmann, Estimation of the adhesion interface performance in 
aluminum-pla joints by thermographic monitoring of the material extrusion 
process, Materials 13 (15) (2020) 3371. 

[162] Anna Bellini, Selçuk Güçeri, Mechanical characterization of parts fabricated using 
fused deposition modeling, Rapid Prototyp. J. 9 (4) (2003) 252–264. 
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